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The Future of HPC - Considering Some Myths



EXASCALE COMPUTING IS HERE (US, CN?)

FRONTIER @ OLCF (US): HPE/CRAY

• AMD EPYC CPUs, AMD MI250 GPUs

• 8.7 M CPU cores & GPU compute units

• 52 GFlop/s/W

• 1102 PFlop/s HPL, rank 1 in Top500 11/2022
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AND SOON IN EUROPE …

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y,  M A R K U S  R A M P P            2 0 2 3 - 0 1 - 11

The EuroHPC JU has 
already procured seven 
supercomputers:

2 Pre-exascale
5 Petascale

Total contracts cost:
EUR ~360M

• 1 more pre-exascale @ BSC, 2023

• “Jupiter”@Jülich will be the first 

European Exascale system (500 M€), 2024
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• Globally, the rate of 

performance increase 

is diminishing

• Some jumps in Top1 

still expected, but what 

then? 



WHAT’S NEXT – THE ZETTAFLOPS SUPERCOMPUTER?

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y,  M A R K U S  R A M P P            2 0 2 3 - 0 1 - 11

from: https://www.nextbigfuture.com/2023/02/intel-and-amd-path-to-zettaflop-supercomputers.html

https://www.nextbigfuture.com/2023/02/intel-and-amd-path-to-zettaflop-supercomputers.html


WHAT’S NEXT – AI WILL TAKE OVER?

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y,  M A R K U S  R A M P P            2 0 2 3 - 0 1 - 11



WHAT’S NEXT – QUANTUM?

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y,  M A R K U S  R A M P P            2 0 2 3 - 0 1 - 11

from: https://www.itwm.fraunhofer.de/en/departments/hpc/quantum-computing.html

https://www.itwm.fraunhofer.de/en/departments/hpc/quantum-computing.html


S. Matsuoka, J. Domke, M. Wahib, A. Drozd, and T. Höfler

12 “MYTHS” IN HPC
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Myth 7: Next-Generation Systems Need 
More Memory per Core!

Myth 8: Everything Will Be Disaggregated!

Myth 9: Applications Continue to Improve, 
Even on Stagnating Hardware!

Myth 10: Fortran Is Dead, Long Live the DSL!

Myth 11: HPC Will Pivot to Low or Mixed 
Precision!

Myth 12: All HPC Will Be Subsumed by the 
Clouds!

Myth 1: Quantum Computing Will Take Over 
HPC!

Myth 2: Everything Will Be Deep Learning!

Myth 3: Extreme Specialization as Seen in 
Smartphones Will Push Supercomputers 
Beyond Moore’s Law!

Myth 4: Everything Will Run on Some 
Accelerator!

Myth 5: Reconfigurable Hardware Will Give 
You 100X Speedup!

Myth 6: We Will Soon Run at Zettascale!

THE 12 ‘MYTHS’ IN HPC
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MYTH 9: APPLICATIONS CONTINUE TO IMPROVE 
EVEN ON STAGNATING HARDWARE

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y,  M A R K U S  R A M P P            2 0 2 3 - 0 1 - 11
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STAGNATING HARDWARE?

source: Nvidia

source: AMD
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AN INCONVENIENT TRUTH

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y,  M A R K U S  R A M P P            2 0 2 3 - 0 1 - 11
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ALGORITHMIC MOORE’S LAW

8 arXiv preprints

higher 

order AMR
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Algorithmic Moore's Law Examples
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Figure 3. Examples of “Algorithmic Moore’s Law” for different areas in HPC; Fusion energy and combustion simulations data

by Keyes (2022) and climate simulation data by Schulthess (2016)

improvement in many legacy codes to be from numerical

solvers, algorithms, low-precision numerics, system software,

etc Schulthess (2016). However, we have to becautious that—

just as hardware improvements have physics and engineering

limits—the “Algorithmic Moore’s Law” also has its own

limits: numerical stability, hitting asymptotic limits, etc. That

being said, those limits might not be as clear and quantifiable

as the limits on hardware. That is since even if one numerical

method hits its limit, domain experts can often reduce/pre-

condition their problem to another numerical method that is

more efficient.

We close with these questions. . .

¨ As the performance improvements from hardware

technologies drop, should the HPC community dramat-

ically increase the investment in software? ≠ Will the

“Algorithmic Moore’s Law” end soon as well?ÆTo what

extent is theHPC community willing to refactor/rewrite

legacy codebases when/if hardware stagnates?

Myth 10: Fortran Is Dead, Long Live the DSL!

Applications might have limits, but what about languages.

How often have we heard “Fortran is dead, long live X”?

Slogans like this havebeen resonating in thecommunity for

nearly 40 years (Post 1982). X has been everything from

C to C++, and more recently Python or Domain-Specific

Languages (DSLs). Yet, Fortran remains in wide use in

important communities such as weather and climate even

for newly written codes. Other languages, such as COBOL

were indeed replaced with more modern alternatives such

as Java. Why is this? Are some parts of our community just

stubborn to follow the youngsters? Or are old languages not

necessarily bad for the task? Indeed, Fortran is a very well

designed language for its purpose of expressing mathematical

programs at highest performance. It seems hard to replace it

with C or other languages and outperform it or even achieve

the same baseline. This may be due to the highly optimized

Fortran compilers or the limited language features (e.g., no

pointer aliasing) that enable more powerful optimizations.

Fortran and other general-purpose languages remain

competitive with many DSLs on CPUs (Ben-Nun et al.

2022) and are recently also adopted to GPUs, albeit often

less elegant. General-purpose portability approaches such as

SYCL (Keryell et al. 2015), also powering Intel’s oneAPI,

or OpenMP provide flexibility as well as some portability

across devices. High-productivity general-purpose languages

are hard to accelerate in practice. For example, Python’s

flexibility (e.g., monkey patching and flexible typing) disables

many static optimizations. However, when restricting the

syntax to high-performance Python (much of NumPy), then

optimizations become simpler (Ziogas et al. 2021). Any

language becomes more complex over time—Fortran 66

evolved into the complex Fortran 2018 language standard.

Similar trends affect DSLs that are widening their scope over

time. Do we require this generality? If yes, then DSLs are

doomed to fail or they morph into general-purpose languages.

Another argument is that the lower levels usually remain

C/C++ and programmers interested in highest performance

areoften happy to dig into the lower levels. Then thequestion

remains—where should the portability layer be located? At a

(virtualized) Instruction Set Architecture (ISA) as in LLVM’s

IR (Lattner and Adve 2004), some lower-level language

such as C/C++ as in SYCL/oneAPI, or even dataflow graph

representations as in DaCe (Ben-Nun et al. 2019)?

We close with these questions. . .

¨ When will programmers stop using Fortran for new

applications?≠ Will weever havemoreapplication codes

written in DSLs than general-purpose languages?ÆWhat

will be the next big DSL?

Myth 11: HPC Will Pivot to Low or Mixed

Precision!

A high-performance language is nothing without proper data

types, but high-precision operations such as fp64 come at a

significant cost in terms of silicon area, energy and speed,

according to Myth 6. Lowering this precision can save costs

Prepared using sagej.cls

https://doi.org/10.48550/arXiv.2301.02432

• Should we dramatically increase 

investments in software?

• Will the “Algorithmic Moore’s 

Law” end soon as well? 

• Are we willing to refactor/rewrite 

legacy codebases? 
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MYTH 4: EVERYTHING WILL RUN ON SOME 
ACCELERATOR!

15



LARGE UNEXPLORED TERRITORY – WILL IT BE TAKEN UP?

https://doi.org/10.48550/arXiv.2301.02432
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MYTH 2: EVERYTHING WILL BE DEEP LEARNING!
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1,000,000x in 5 years!

Collected and shared by 
Nikoli Dryden (LLNL)

Slide from FugakuGPT/Rio Yokota

GPT4: requiring Top500 
Top-5 capabilities

Sunway 
TaihuLight
93PF

ORNL Frontier 
1100 PF 

⚫ The rapid evolution of large language models 
(LLMs) leading up to GPT-4 can be attributed 
to scaling, which in turn has been supported 
by "free ride" or "low-hanging fruit" 
advancements in supercomputer technologies, 
such as weak scaling, low-precision arithmetic 
in GPUs, matrix multiplication engines, high-
bandwidth memory (HBM), and high 
bandwidth interconnects, etc. 

⚫ Coincidentally, the GPT-3.5/4.0 revolution 
occurred when utilizing computational 
resources equivalent to those of top-tier 
supercomputers.

⚫ The development of models eg GPT-5 will slow 
down as the era of "free ride“ ending, causing 
progress to be proportional to the evolution of 
supercomputers.

⚫ Moving forward, it is important to focus on 
research in large-scale supercomputer AI 
systems, along with how to incorporate 
domain-specific knowledge in the 
foundational models

AI Training is Now the Forefront of High End HPC

(And thus Free Ride on HPC is Over) 

slide curtesy Satoshi Matsuoka



A FEW EXAMPLES OF AI IN 
“CLASSICAL” (E)SCIENCE

From Collaborations of MPCDF 

with various Max Planck 

Institutes

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y



AlphaFold2 [1]

• Deep learning system to predict the 3d structure of proteins based on their linear sequence of amino acids

• Adapted and optimized by MPCDF early on for use on supercomputers with GPU acceleration

• High demand and extreme IO requirements, mitigated by using dedicated NVMe-based storage systems

• Very large and broad user base, encompassing theoretical, interdisciplinary, and experimental groups

PREDICION OF 3D PROTEIN STRUCTURES
ENABLING AI SYSTEMS IN COMPUTATIONAL BIOLOGY FOR A BROAD USER BASE

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y
[1] Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." Nature 596.7873 (2021): 583-589.

[2] https://github.com/deepmind/alphafold

>T1037 S0A2C3d4, , 404 residues|

SKINFYTTTIETLETEDQNNTLTTFKVQNVSNASTIFSNGK

TYWNFARPSYISNRINTFKNNPGVLRQLLNTSYGQSSLWAK

HLLGEEKNVTGDFVLAGNARESASENRLKSLELSIFNSLQE

KDKGAEGNDNGSISIVDQLADKLNKVLRGGTKNGTSIYSTV

TPGDKSTLHEIKIDHFIPETISSFSNGTMIFNDKIVNAFTD

HFVSEVNRMKEAYQELETLPESKRVVHYHTDARGNVMKDGK

LAGNAFKSGHILSELSFDQITQDDNEMLKLYNEDGSPINPK

GAVSNEQKILIKQTINKVLNQRIKENIRYFKDQGLVIDTVN

KDGNKGFHFHGLDKSIMSEYTDDIQLTEFDISHVVSDFTLN

SILASIEYTKLFTGDPANYKNMVDFFKRVPATYTN
[2]

https://github.com/deepmind/alphafold


Automatic analyses of atom probe tomography data

• A convolutional neuronal network has been 

developed which can reconstruct 3D crystal structures 

from atom probe tomography data

• The method dramatically speeds up the analysis of 

micrographs

• The method has been extended to reliably detect 

chemical short-range order (CSRO) in crystalline 

structures

RECOGNITION OF CRYSTAL STRUCTURES 
A COLLABORATION OF MPI FÜR EISENFORSCHUNG AND MPCDF 

MAX PL ANCK CO MPUT I NG  AND DAT A F ACI L I T Y

Y. Li, T. Colnaghi. A. Marek et al. Npj Comput. Mater. 7, 8 (2021)



SISSO, a deterministic symbolic regression method

• extracts mathematical expressions directly from data in 2 steps:

1. create a (huge) pool of analytical expressions through iterative 

combinations 

2. select optimal candidates for desired properties through (regression) 

analysis of these expressions and their linear combinations

• SISSO++, open source software (Purcell et al., JOSS, 7(71), 3960, 2022)

cross-platform, GPU-acceleration using the Kokkos framework

• scientific application highlight:  identification of > 50 strongly thermally 

insulating materials for thermoelectric elements (devices able to convert 

otherwise wasted heat into useful electrical voltage) 

SISSO++
A COLLABORATION OF THE FRITZ-HABER INSTITUTE, MPCDF, EU COE NOMAD 

MAX PL ANCK CO MPUT I NG  AND DAT A F ACI L I T Y

Y. Yao,S. Eibl,M. Rampp,L. Ghiringhelli, T. 

Purcell, M. Scheffler (in preparation)

Purcell et al. npj Comput Mater 9, 112 (2023)



Generate relevant chemical structures

• Obtaining chemical structures for interesting 

configuations is hard, since the most stable (measured) 

ones are “boring”

• Design and train a physics informed generative 

model which can create physically correct but very 

interesting structures 

• The generated structures will be then used for 

calculations of material properties

GANS FOR CHEMICAL STRUCTURE GENERATION 
A COLLABORATION OF MPI FHI AND MPCDF 

MAX PL ANCK CO MPUT I NG  AND DAT A F ACI L I T Y

P. König et. al., Presentation at the SKM 

2023



Synthetic image generation for segmentation networks

• Instead of training on expensive  (and hard to obtain) 

real MRI scans, a massive and diverse synthetic 

dataset is generated

• The synthetic images are obtainded via a generative 

model that takes as input real exisiting label maps

• The generative model is tuned to produce images that 

resemble the the real MRI scans

• The final segmentation model (well-proven 3d Unet) is 

trained with this generated dataset

SYNTHSEG 
A COLLABORATION OF MPI CBS AND MPCDF 

MAX PL ANCK CO MPUT I NG  AND DAT A F ACI L I T Y



Automatic density reconstruction from distance and 

optical-IR extinction measurements

• A new algorithm (based on baysian statistics) to infer 

a 3d density distribuition from distance and extinction 

measurements has been optimized by MPCDF to be 

able to tackle better resolved inference grids

• A catalog with 16 molecular cloud complexes of the 

Milky Way a 3d density distribution could be generated

3D MAPPING OF CLOUD COMPLEXES IN THE MILKY WAY 
A COLLABORATION OF MPI ASTRONOMY AND MPCDF 

MAX PL ANCK CO MPUT I NG  AND DAT A F ACI L I T Y
T. E. Dharmawardena et al., The 3D structure of Galactic molecular cloud complexes out to 2.5 kpc, MNRAS (2022)



• AI methods are being explored in many scientific domains

• already in production in some

• “black-box” approach seen critically sometimes

• effort on validation, trust-worthyness, error-estimation etc. 

• Potential to speed up many tedious tasks

• pruning search spaces, creating new study objects via generative models, steering simulations, etc. 

• But will they replace first-principle simulations? 

• and if so, should the physical model be changed? 

• Doubtless, we will see many more (and surprising) adoptons of AI methods in (e)Science

SUMMARY

M A X  P L A N C K  C O M P U T I N G  A N D  D ATA FA C I L I T Y



MYTH 1: QUANTUM COMPUTING WILL TAKE OVER HPC
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⚫ For practical ‘quantum supremacy’, exponential 
speedup cf classical algorithm is necessary

⚫ Many algorithms only achieve quadratic speedup, 
thus will lose to classical in practice

⚫ E.g., Shor’s algorithm – exponential => Good

⚫ E.g., Grover’s algorithm – quadratic=>NG

⚫ For ‘pure’ quantum algorithms, none exist that 
exhibit quadratic speedup & can be executed 
practically on current NISQ machines w/~100 
qubits

⚫ Shor’s algorithm may break RSA 2048 in the far 
future but will require 20~200mil NISQ qubits
https://arxiv.org/pdf/1905.09749.pdf

⚫ Hybrid algorithms e.g., variational algorithms 
(e.g. VQE) might be useful in much closer future

⚫ Require platform to conduct scientific analysis of 
QC, as large qubits as possible, using real state-
of-the art real machines and simulators!

Scientific Analysis (not Hype) of Utility of Quantum Computing

Torsten Hoefler, Thomas Häner, Matthias Troyer
Communications of the ACM, May 2023, Vol. 66 No. 5, Pages 82-87
10.1145/3571725

slide curtesy Satoshi Matsuoka



• More research into algorithms

• QC good for big compute on little data; bad on big data

• QC likely as “accelerator” for certain problems in a classical 

workflow

• Most common strategy adopted worldwide today, including 

EuroHPC

• Commercial viability of QC? 

LIKELY/NEEDED QUANTUM DEVELOPMENTS
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• We see a lot of hypes and myths in HPC

• some might become reality, some not

• There is a lot more than (today’s) hardware/FLOPS-focussed Exascale 

computing

• scientific approaches need, not hypes

• Realize that the current hardware market is driven by AI, not HPC

• be pragmatic and adopt

CONCLUSIONS
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